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▶ Aristotle (350 BC) distinguished potential infinity (adding
1 + 1 + 1 + 1 + · · · ) from actual infinity (real entities) for
which he postulated to be impossible to exist.

▶ The Hellenistic Greeks were terrified of the infinite. However,
Euclid proved that there are infinitely many prime
numbers (avoiding the word infinity).
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Paradoxes I

(Arguably) The most famous paradox about infinity: Zeno’s
Paradox.

“The Race Between Achilles and the Tortoise”



In mathematical terms, if a is Achilles’s speed in meters per second
and x the tortoise’s speed (a > x), then Achilles needs 100
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We don’t have to go this far: try to express 1
3 as a decimal.



17th - 19th Centuries

European mathematicians started using infinite quantities and
infinite expressions in a systematic way.

▶ With the invention of Calculus by Isaac Newton and Gottfried
Leibniz—infinitesimals, very small quantities.

▶ In 1655, John Wallis introduced the lemniscate symbol ∞ to
compute areas.

▶ The great mathematician Leonhard Euler devised the
importance of the infinite and provided theorems about
infinite sums and products... Without a proper definition of
either convergency or infinity!
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Mathematicians gave a huge leap forward with the rigorous
definition of limits by Agustine-Louis Cauchy and Bernard
Bolzano. (Yes, that ε-δ definition you hate :)

Intuitively, the set of natural numbers

N = {0, 1, 2, . . .}

is infinite. How to define it?
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So “counting” is just a one-to-one correspondence among
elements in the sets. We call this assignation (function) between
sets a bijection.

Figure: Georg Ferdinand Ludwig Philipp Cantor
Source: University of Hamburg
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Definition
A set X is finite if there exists a natural number n ∈ N such that
there is a bijection between X and {0, 1, . . . , n}. If such bijection
doesn’t exist, we say that X is infinite.

Examples: N, the set of real numbers R, the set of complex
numbers C.

Two sets X and Y have the same size, denoted by |X | = |Y | if
and only if there’s a bijection between them. If there is an injective
function and |X | ≠ |Y |, we denote it by |X | < |Y |.
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The First Big Result

Consider the set of infinite binary (zeros and ones) sequences,
denoted by {0, 1}N.

For instance, (1, 0, 1, 1, 1, 1, 1, 1, . . .) ∈ {0, 1}N.

The set {0, 1}N contains a “copy” of N:

(1, 0, 0, 0, 0 . . .), (1, 1, 0, 0, 0 . . .), (1, 1, 1, 0, 0 . . .), . . .

so it is infinite.
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Moreover, there is no bijection from N onto {0, 1}N because if
there were a bijective function

f : N → {0, 1}N

then we can enumerate the elements of {0, 1}N, say,

f (0) = a0, f (1) = a1, f (2) = a2, f (3) = a3, . . . .

Define the infinite binary sequence a∞ that differs at the i-th bit
from ai . This a∞ is not covered by any of the ai ’s in the list.
Thus, such enumeration is impossible!
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What we have actually showed is that these are different infinities!

Denoting the cardinality of N by ℵ0 and the cardinality of {0, 1}N
by 2ℵ0 :

ℵ0 < 2ℵ0

By applying a similar argument, we can create an infinite list of
infinities:

ℵ0 < 2ℵ0 < 22
ℵ0 < 22

2ℵ0

· · ·



What we have actually showed is that these are different infinities!

Denoting the cardinality of N by ℵ0 and the cardinality of {0, 1}N
by 2ℵ0 :

ℵ0 < 2ℵ0

By applying a similar argument, we can create an infinite list of
infinities:

ℵ0 < 2ℵ0 < 22
ℵ0 < 22

2ℵ0

· · ·



What we have actually showed is that these are different infinities!

Denoting the cardinality of N by ℵ0 and the cardinality of {0, 1}N
by 2ℵ0 :

ℵ0 < 2ℵ0

By applying a similar argument, we can create an infinite list of
infinities:

ℵ0 < 2ℵ0 < 22
ℵ0 < 22

2ℵ0

· · ·



What we have actually showed is that these are different infinities!

Denoting the cardinality of N by ℵ0 and the cardinality of {0, 1}N
by 2ℵ0 :

ℵ0 < 2ℵ0

By applying a similar argument, we can create an infinite list of
infinities:

ℵ0 < 2ℵ0 < 22
ℵ0 < 22

2ℵ0

· · ·



ℵ’s and Cardinal Arithmetic

Some of these infinite numbers are defined using ℵ′s:

0, 1, 2, 3, . . . ,ℵ0,ℵ1,ℵ2, . . . ,ℵn, . . .

For any two cardinal numbers κ, µ, we can define the sum + by
using the (disjoint) union of the underlying sets. This operation
behaves mostly normally: it is commutative, associative, 0 is an
identity.

However, rare things happen in the infinite realm:

ℵα + ℵβ = ℵmax{α,β},

Similarly, for multiplication...
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The Continuum Hypothesis

With some math, we can prove that |R| = 2ℵ0 .

Cantor’s problem: Is it true that for any infinite subset of real
numbers A, either A = |N| or A = |R|?

?

?



The Continuum Hypothesis

With some math, we can prove that |R| = 2ℵ0 .

Cantor’s problem: Is it true that for any infinite subset of real
numbers A, either A = |N| or A = |R|?

?

?



The Continuum Hypothesis

With some math, we can prove that |R| = 2ℵ0 .

Cantor’s problem: Is it true that for any infinite subset of real
numbers A, either A = |N| or A = |R|?

?

?



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe

Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe

Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



Shoes and Socks

. . .

Choose left shoe Choose left shoe Choose left shoe

This is a well-determined choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock?

Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock?

Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



What about socks?

. . .

Which sock? Which sock? Which sock?

In this case, there’s not an easy way to create a choice function.



Zermelo’s Axiom of Choice

Axiom of choice: Every collection of non-empty sets has a choice
function.

In the beginning, the axiom of choice was controversial. Nowadays,
it’s freely used in mathematics.
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The Banach-Tarski Paradox

Consider the rotations A and B, given by a (positive) rotation of
θ = 70.53◦ over the x-axis and the z-axis, respectively.
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The Banach-Tarski Paradox
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The Banach-Tarski Paradox

Rotation B−1AB2: The point P = (1, 0, 0) goes to (−5
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We can see that the point (1, 0, 0) is never reached back by these
combinations of rotations! Therefore, these are essentially all
“words” in the letters A,B,A−1,B−1 (by canceling out suitable
terms like AA−1):

Source: Wikipedia
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The Banach-Tarski Paradox

Collect such words (rotations) and form the set G .

Starting from every point x = (x , y , z) in the sphere, collect all
points that can be reached by x in O(x), i.e.

O(x) := {gx|g ∈ G}.

Consider all sets of the form O(x). Then each of these represents a
piece of the sphere. So we have cut the sphere in a bunch of
pieces!
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Crucial step: Choose one element from each of the elements in
the previous partition and collect them in a set, say, C .

Using C , we can create another partition of S2 with sets
P1,P2,P3,P4 in such a way that:

BP2 = P2 ∪ P3 ∪ P4, AP3 = P1 ∪ P2 ∪ P3

This is just another partition of the sphere!
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This means that after rotating P2 by B and P3 by A and
reassembling together with P1 and P4, we get two copies of the
initial sphere!
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essentially partition a pea and turn it into the sun!
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The axiom of choice has a non-constructive nature, that’s why
mathematicians frowned upon it...

The previous paradoxical result can be explained by the fact that
we can’t assign a notion of volume to the considered pieces.

“At the end of the (chosen) day, it’s your choice to
choose choice or not to choose choice.”
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Paradoxes II

Near the end of the 19th century, there was a series of paradoxical
results, which led to a foundational crisis in mathematics.

Questions like: How to formally construct the set N?

More importantly, what on earth is a set?



Paradoxes II

Near the end of the 19th century, there was a series of paradoxical
results, which led to a foundational crisis in mathematics.

Questions like: How to formally construct the set N?

More importantly, what on earth is a set?



Paradoxes II

Near the end of the 19th century, there was a series of paradoxical
results, which led to a foundational crisis in mathematics.

Questions like: How to formally construct the set N?

More importantly, what on earth is a set?



Paradoxes II

Near the end of the 19th century, there was a series of paradoxical
results, which led to a foundational crisis in mathematics.

Questions like: How to formally construct the set N?

More importantly, what on earth is a set?



Russel’s paradox

Consider the set R of elements that do not belong to themselves,
i.e., x ∈ R if and only if x ̸∈ x . Does R belong to R?

Yes! Ok, if R belongs to R then by definition of R, R ̸∈ R, so R
does not belong to R! A contradiction.

Well, then no. If R does not belong to R, then by definition of R,
R ∈ R. Again, a contradiction.

Conclusion: R cannot be a set!
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These types of results led to a strong opposition to Cantor’s set
theory and a reevaluation of the logical basis of math.

Different philosophical schools of thought rose, among them:

Constructivism, Platonism, Finitism, Logicism, Formalism,...

Figure: Luitzen Egbertus Jan ”Bertus” Brouwer,
Source: St. Andrews University
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Axiomatization of Mathematics—Hilbert’s Program

“No one can expel us from the paradise that Cantor has created
for us.” -Hilbert

David Hilbert (early 1920s) proposed to formally derive all
mathematics using

▶ A precise formal language and clear deduction rules;

▶ A “nice” set of axioms;

In such a way that mathematics are complete (all truths can be
proved) and consistent (no contradictions).
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The Fifth Postulate and Different Geometries

The Parallel Postulate
In a plane, given a line and a point not on it, exactly one line
parallel to the given line can be drawn through the point.

Mathematicians through time tried to prove it from the
other four axioms... Unsuccessfully.

Why? There are two forms to negate this axiom.
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Hyperbolic Geometry

1st Negation of the Parallel Postulate

Given a line and a point not on it, at least two lines parallel to the
given line can be drawn through the point.

Source: Wikipedia

Lobachevsky first proposed and study its properties.
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So the parallel postulate cannot be deduced from the axioms of this
theory (i.e. Euclidean geometry), we say that it is independent.
The corresponding planes are “models” of these theories.

Similarly, there’s an axiomatic theory of fields, groups, arithmetic
(Peano’s axioms), etc.

A word on truth: In the theory of fields, think of statements like:

∃x(x2 + 1 = 0).

Is this statement true? It depends on the model (=where we
interpret the symbols).
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Further developments of axiomatic set theory led to the
development of the Zermelo-Fraenkel axioms (ZF), where
virtually all mathematics can be formalized.

It then functions as a solid logic foundation of mathematics!

Hilbert’s program was successful!!!
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Hold your horses

Kurt Gödel (1931): (The 1st Incompletness Theorem) In any
consistent theory with a nice set of axioms that is strong enough
to carry out basic arithmetic cannot be complete.

Let me rephrase it: under these assumptions, there are things
that can’t be proved nor disproved.

No problem, we can live with this...
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Kurt Gödel (1931): (The 2nd Incompletness Theorem) Under
the same assumptions on a theory, this theory cannot prove its own
consistency.

In other words, we cannot prove the consistency of a strong theory.

Figure: Kurt Gödel
Source: University of Bonn
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Therefore, Hilbert’s program is doomed to fail... In an axiomatic
framework, we have to live with the fact that there are
undecidable things and that we can’t prove the consistency
of our theory.
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Not everything is lost

Most working mathematicians don’t need to worry about these
logical subtleties.

Moreover, we have relative consistency proofs: Assuming the
consistency of ZF, we can prove if a statements is consistent with
it.
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The last slides

Recall the axiom of choice (AC) and our initial problem (Cantor’s
problem or CH): Is it true that for any infinite subset of real
numbers A, either A = |N| or A = |R|?

Gödel (1938): The axiom of choice is consistent with ZF.

Gödel (1940): CH is consistent with ZF.
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Gödel (1938): The axiom of choice is consistent with ZF.
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Cohen (1963): The negation of the axiom of choice is
consistent with ZF.

Cohen (1963): The negation of CH is consistent with ZF.

So we cannot prove or disprove these two statements!!!
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Our good friend Cantor died trying to prove something that
was impossible to prove and refute. His legacy will remain
forever, though.

Figure: Older Cantor
Source: Carnegie Mellon University
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“The essence of mathematics lies precisely in
its freedom.”–Cantor

Thanks!
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